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STRUCTURAL CONSEQUENCES OF SMALL
IMPERFECTIONS IN ELASTIC THIN SHELLS OF REVOLUTION

C. R. CALLADINEt

University Engineering Department, Cambridge University, Cambridge, England

Abstract-The equations of a symmetrically loaded elastic thin shell of revolution are set up in such a way that
the effects of small deviations of the meridian from a "perfect" form may be analyzed with ease. Solutions are
found for several kinds of imperfection and the results plotted in a specially compact form. The structural effects
depend strongly on the meridional length of the imperfection. Some shell junction problems can be analyzed
in terms of imperfections. The method can be extended to find classical buckling loads for axially symmetric
modes.
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terms in equations (24), (25)
Young's modulus
uniform outward ring load per unit circumference
stress resultant per unit length (Fig. 3)
bending stiffness of shell element [equation (l4)J
various meridional lengths
Meissner's operator [equation (17)]
bending stress resultant per unit length (Fig. I)
direct stress resultant per unit length (Fig, I)
function of shell loading [equation (19)J
shearing stress resultant (Fig. 1)
radius of (equivalent) cylindrical shell
thickness of shell
shearing force = roR
number =:::01·3, depending on value of Poisson's ratio [equation (15), Fig. 4J
eccentricity of effective meridian = M.,IN.,
parameter in solution for sinusoidal imperfection [equation (39), Fig. 14J
attenuation factor for peak M., (Fig. 9)
meridional length of typical imperfection
"rise" of spherical cap (Fig. 5)
local outward normal component of surface traction per unit area
radii defined in Fig. 2
meridional length co-ordinate
tangential component of displacement (Fig. 2)
normal component of displacement (Fig. 2)
shell parameter = cIJ(RT)
= LCI2J(RT)
direct strain
curvature change due to bending moment
equivalent length of imperfection [equation (37), Fig. 12J
Poisson's ratio
deviation of meridian from perfect (Fig. 6)
normal stress
rotation of tangent (Fig. 2)
standard quantities (Fig. 7)
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o (subscript)
QJ (subscript)
* (superscript)
b (superscript)
p (superscript)

circumferential direction
meridional direction
membrane solution
bending
perfect meridian

C. R. CALLADINE

INTRODUCTION

THIS paper is concerned with the question of how much a small imperfection in form of a
thin shell of revolution affects the distribution of stress due to an applied static loading.

Clearly an extremely slight imperfection may cause negligible deviations from the
nominal or "perfect" stress distribution. On the other hand, an eccentricity of tension
within an element of a plate or shell equal to only one-sixth of the thickness produces
elastic "bending stress" equal in magnitude to the nominal tensile stress.

In some situations concentrations of stress due to imperfections of form are of little
concern to the designer; as, for example, when the material possesses ample ductility. In
other cases, notably when fatigue is an important design consideration, the effects are not
negligible and should therefore be studied.

In 1955 Carlson and McKean [1J discussed the general problem of the effects of geo­
metrical imperfections on the behaviour of pressure vessels and drew some valuable
conclusions from the results of intelligent general analysis and experimental observations.
They used some earlier work of Haigh [2].

Several investigators have tackled more tractable specific problems concerning im­
perfections in form ofthe meridian ofa thin shell of revolution. Thus, Clark and Reissner [3J
considered a slightly imperfect cylinder under axial load, FItigge [4, p. 364J studied dead­
weight stresses in an imperfect hemispherical shell and Steele and Skogh [5J studied the
effects of slope discontinuities in axially symmetric pressure vessels.

All of these studies have involved moderately heavy analytical and/or numerical work.
The object of the present paper is to explore and present simpler and more general

ways of tackling problems of the same sort. Realization of this aim is possible as a result
of recent work by the author [6J which includes a simple re-statement of the classical
equations of thin shells of revolution, in consequence of the definition of some useful
new variables.

The calculations turn out to be gratifyingly simple and the effects of several sorts of
imperfection can be assessed without difficulty. Simple general principles may be adduced
and the results applied to shells of arbitrary (but sufficiently smooth) shells of revolution.

Attention is restricted to linear-elastic shells which are stress-free before the application
of load. These restrictions are not unrealistic for moderately small stress-relieved pressure
vessel structures, but it should be remembered that there are other situations where imper­
fections are inextricably associated with initial stresses and yet others where loads, e.g.
self-weight, are not removable. Such problems warrant further study.

EQUATIONS OF THE PROBLEM

Equilibrium equations

Figure 1 shows positive bending, direct and shearing stress resultants per unit length
of centre-surface, acting on an arbitrary small element of a symmetrically loaded shell of
revolution. All stress resultants not shown vanish identically, by symmetry.
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FIG. 1. Stress resultants on element of thin shell of revolution.

Figure 2 shows a portion of the meridian of an arbitrary shell of revolution. Four
radii are defined at any point on the meridian: ro is the perpendicular distance from the
axis, rl and rz are the principal meridional and circumferential radii of curvature, respec­
tively, and r 3 is the distance from the axis, measured along the projection of the local
tangent. Distance along the meridian from an arbitrary reference point is denoted by s.
The symbols in Figs. 1 and 2 are in general accord with the notation of Fltigge [4] and
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FIG. 2. Geometry of meridian and components of displacements.
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Timoshenko [7J; the only novelty is the definition of r3' All trigonometrical functions of
the meridional angle <p are readily expressed as ratios between ro, r2 and r3 •

For a given shell and loading we may readily calculate the "membrane" stress resultants
N:, Nt by considerations of statical equilibrium. Since in the membrane theory Qq, == 0
we may find N: by studying the axial equilibrium of a "cap" and then find Nt from the
radial equilibrium equation,

(1)

where p is the local outward normal component of the surface traction per unit area.
In general, of course, the assumptions of membrane theory will not apply and we shall

have instead three non-trivial equilibrium equations for the element shown in Fig. 1.
These may be written [6J

where

dU *(l; = Ne -Ne (2)

(3)

(4)

U = r2Qq,.

Equations (2) and (3) express clearly the idea that the membrane solution applies
when Qq, == O.

These equations are precisely equivalent to 7(aHc) on p. 320 of [4J or equations (312)
in [7]. They are formally simpler and the loading terms enter indirectly, via the membrane
stress resultants.

Equation (3) expresses the axial equilibrium equation for a cap. Figures 3(a) and (b)
show two statically equivalent ways of decomposing the force vector acting on a circum­
ferential cut; the vector sum of H (perpendicular to the axis) and N: is equal to the vector
sum of Qq, and N q,'

It follows by elementary trigonometry that

H = Qq, cosec <p

hence

U = r2Qq, = roH.

Thus U is the total shearing force across a radius, as shown in Fig. 3(c).

(5)

Kinematic equations

It is again advantageous to use r3 in setting up the kinematic equations for the shell.
Let wand v be component small displacements of a point on the meridian in directions
normal and tangential to the meridian, respectively, and let Xbe a small rotation of the
meridian, as shown in Fig. 2. Then if Kq" Ke are the principal curvature changes and Bq" Be
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(0) (b)

H lunit circumference

FIG. 3. Aspects of shearing stress resultant.

the changes in in-plane strain due to v, wand X, it follows simply that

dv w
e.p = -+-,

ds r 1

dX
K4J=-

ds

dw vx=--­
ds r1

(6)

(7)

(8)

In these equations various negligible terms have been omitted, following [4, chapter 6].
Further, v and w may be eliminated from (6) to give the compatibility relation

(9)

The form of (7H9) and (2)-{4) is similar, save for the lack of "loading" terms in (7) and (8):
i.e. the well-known static-geometric analogy [8] holds.

Elastir constitutive relations

In elastic analysis of initially stress-free shells, we couple (2H4) and (7H9) by means
of constitutive relations between the strain and stress resultants for an element of shell.
Let E be Young's modulus and v Poisson's ratio for the material and let T be the (constant)
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thickness of the shell; then the relations we seek are

Mq, = K(Kq,+VK9)

M 9 = K(K9+ VKq,)

and

Go = (No-vNq,)/ET

Gq, = (Nq,-vN9)/ET.

The bending stiffness, K, is given by

where

(10)

(11 )

(12)

(13)

(14)

(15)

(16)

Figure 4 shows c as a (rather insensitive) function of v. These relations embody the assump­
tion that no deformation is attributable directly to Qq" which is reasonable for sufficiently
thin shells [4]. Putting (4) in terms of X by using (10), (11), (7) and (8), we find

[vx] UL(X)- - =-
r 1 K

c

o 0·1 0·2 0·3 0·4 0·5
FIG. 4. Variation of parameter c with Poisson's ratio.

where the operator L(. ..) is given by

(
dZ 1 d 1)

L(...) = rz -dz(.. .)+- -d(.. ')-2("') .
s r3 s r3

Similarly, putting (9) in terms of U we have

L(U)+[Vr~] = Prz-xET

(17)

(18)
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where

p = dN: _V dN:+[(l+V)(N:_N:)]. (19)
ds ds r3

Operator L(. ..), Meissner's operator, is well known in elastic shell analysis (see [4, p. 360]),
but its present "clean" form is due to the introduction of r3 as a variable. For a cylindrical
shell r3 ---> 00 and the second and third terms of L(. ..) vanish.

Simplifying the equations

In many practical problems the operator L(. ..) can be simplified in consequence the
observation, due to Geckeler [9], that the omission of the second and third terms, together
with the second terms on the left hand side of(16) and (18), has little effect upon the solution.
When this is so the equations are analogous to those ofa cylindrical shell (for which r3 ---> (0),
and the "boundary layer" due to a discontinuity extends a meridional distance of order
~(r2T).

The second and third terms of L(. ..) may be dropped if

~(r2T)« r3. (20)

In any given case the relative magnitudes ofr3 and ~(r2T) may be determined by inspec­
tion. At the edge of a cap of a spherical shell, for example, we find by simple geometry that

r3 J(2h)
~(r2T) > T

where h is the "rise" of the cap: see Fig. 5. Calculations show that if r3/~(r2T) > 5, i.e. if
the rise of the cap is more than about 10 times the thickness, it is safe to use the simplified
form of L(. ..). We would arrive at the same resulting equations by neglecting the terms
in square brackets in (4) and (9).

In the remainder of this paper we shall assume that the Geckeler approximation is
justified, so our analysis will not be applicable to a limited region near the crown of a
spherical shell.

SHELLS HAVING IMPERFECT MERIDIANS

Effect on the membrane stress resultants

Our first task in studying the consequences of an imperfection in the meridian is to
find the effect of the imperfection on the membrane stress resultants Nt and N:, which
appear in the loading term of the general equations.

Let the small deviation of the meridian from the "perfect" meridian be expressed as
~(s), measured normal to the perfect meridian as shown in Fig. 6. Denoting changes due
to the introduction of the imperfection by the operator Ll, we find, by differentiating (1):

LlN:/r t +N:Ll{l/rd+LlN:Jr2+N:Ll(1/r2) = O. (21)

We need therefore to find Ll(1/r t ) and Ll(1/r2) in terms of ~(s). By geometry

Ll(1/r t ):::= d2~/ds2 (22)

Ll(1/r2):::= -(d~/ds)/r3-~/d. (23)
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FIG. 5. Geometry of a spherical cap.

Let us examine the relative magnitudes of these terms by considering an imperfection of
the form

~ = (~o/2)(1-cos 2ns//)

where the origin for s is at one end ofthe imperfection, whose meridional extent is t. Further
(anticipating a later result), we take .j(rzT) as a typical value of t. Putting peak values of
the derivatives in (22) and (23) we have

~(l/rl) = 2nz~o/rz T = A (24)

Ml/r z) = (n~o/r3.j(rzT»+(~o/d) = B+C. (25)

axis

I perfect meridian~

FIG. 6. Specification of an imperfection.
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Now CIA has the same order of magnitude as T/lOr2, which is small for thin shells, and
B/A has the same order of magnitude as J(r2 T)/6r3, which is also small since we are assum·
ing r3/J(r2T) > 5. Consequently we may put

A(1/r2) « A(l/r1). (26)

Thus the meridional curvature is much more sensitive than the circumferential curvature
to the presence of an imperfection of this sort. This result is stronger the smaller the value
of l.

The membrane equilibrium equation for a "cap" may be written

N;.2r5lr2 = axial load on cap

where the right hand side includes the effect of all forces and pressures. Differentiating,
as before, we have

AN;/r2+N;A(1/rz) = O.

In this equation changes in ro, which affect the left hand side (and right hand side when
there is pressure loading) have been neglected, since Aro/ro = e/r 2 , which is small compared
to the terms retained.

Putting r3 = lOJ(r2T), for example [see (20)], and eo = T/3 we find from (25)

rzA(1/r2) =:= 0·1.

Hence it seems reasonable to neglect changes in r2 altogether, i.e. to put A(1/rz) = O.
We thus obtain, from (26), (21) and (22)

AN; = 0 (27)

AN: = r2N: dze/ds2. (28)

This somewhat brutal set of approximations turns out very well in practice. In his example
Fltigge [4, p. 364] points out that N; for the imperfect shell is virtually indistinguishable
from that for the perfect shell, while in contrast N: fluctuates wildly: it is, indeed, given
almost exactly by (28). Also, Heyman [10] has pointed out that small adjustments in the
meridional profile of domes can result in large changes in N: with, nevertheless, negligible
changes in N:.

We now suppose that the meridional shape and loading of the "perfect" shell are
such that the actual and the membrane stress resultants differ negligibly. Then the mem­
brane stress resultants for the imperfect shell are given by

N: = N&+N~rz d2e/ds2 (29)

~=~ ~

where superscript p denotes the perfect shell.
To study the effects of a given imperfection we can solve (16) and (18) simultaneously.

Substituting (29) and (30) in (19) we find, after neglecting small terms:

(31)

We shall consider first shells having perfect meridians with r2 = const. = R. Again
neglecting changes in r2 due to the imperfection and using the Geckeler approximation,
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we find that the left hand side of (16) and (18) are unchanged by the introduction of the
imperfection, so the equations are particularly easy to solve.

A physical interpretation

In many situations it is useful to think in terms of the physical meaning of equations.
In our equations, as we have seen, the imperfection enters only on the right hand side,
via the computation of Nt. Thus the solution for the effect of the imperfection is precisely
as for a perfect cylindrical shell of radius R loaded by pressure varying along the meridian
in such a way that Nl is the same as in the imperfect shell. This distribution of internal
gauge pressure on the perfect shell corresponding to the effect of the imperfection is given
by

(32)

which has an obvious physical interpretation. Further, if there is a slope discontinuity
[d~/ds], we have a corresponding line load per unit circumference of intensity

(33)

Now for a line load F per unit length acting on a cylindrical shell of radius Rand
thickness T the distributions of N 6 and M", are symmetrical about the plane s = 0 of the
load, and are given for s > 0 by the equations [7, p. 471]

N 6 = (FcJR/2JT)e-PS(cos{3s+sinps) }
(34)

M", = -(FJ(RT)/4c) e-PS(cos ps-sin {3s)

where

p = c/J(RT).

These relations are plotted in Fig. 7.
Hence, for any arbitrary imperfection profile we can find the corresponding distri­

butions of N 6 and M", by working out p and F according to (32) and (33) and then suitably
superposing multiples of the symmetrical standard distributions (34).
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FIG. 7. Stress resultants for cylindrical shell carrying a ring load.
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EXAMPLES OF IMPERFECTIONS

Simple dope discontinuity

The simplest imperfection to study is a slope change in the meridian, as when a
cylindrical shell is joined onto a conical shell with a slight taper. (Discontinuities of this
sort occur in some finite-element representations of shells of revolution [11].) For a slope
discontinuity of [d~/ds] (34) may be used directly with (33).

It is interesting to plot the results in a way suggested by Fltigge to show the magnitude
of M4> relative to N 4>' Let e4> = M4>/N 4> be the eccentricity of the meridional tension statically
equivalent to M4> and N 4> together. The eccentricity may easily be plotted, as in Fig. 8,
together with the meridian itself, to an arbitrary scale. By (34)

e~ax = [d~/ds].J(RT)/4c.

"'effective meridian

imperfect meridian

I
, ~........, Jpossible smoothing arc ....

..........
...........

FIG. 8. Results for a slope discontinuity.

(35)

This has the geometrical interpretation shown. Note that this "eccentricity line" has no
slope discontinuity: this is no accident, since by equilibrium

F = [dM4>/ds].

The "eccentricity line" has a useful property by virtue of the equilibrium equations
(2) and (4). Omitting the term in square brackets from (4) and putting r2 = R we find, in
general,

N 8 = Nt- R d2M4>/ds2

= Nt - RN: d2 e4>/ds2 (assuming N: = const.) (36)

= N~+RN:d2(~-e4»/ds2.

Therefore, by (29) N 8 is the membrane stress resultant for an artificial shell whose meridian
is the "eccentricity line" ; see Fig. 8.
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Thus for any given imperfection the complete solution (M"" N e) may be expressed
compactly by a diagram showing the "eccentricity line". From now on we shall call this
the "effective meridian" and all of our results wiIl be plotted in this way.

Returning to the problem, let us find the peak stress in the shell wall in the 4J direction
due to bending moment M"" say u~. Since for linear-elastic material

u~ = 6M",/T 2

we find

u~T/N", = 6e,;ax/T = (l·5/c)(R/T)t[de/ds].

Supposing we decide, somewhat arbitrarily, that we can only tolerate a 20 per cent increase
in u'" due to bending stress on account of a "kink" imperfection, we have, for v~ 0·3,

[de/ds] < 0·17(T/R)t.

Thus, for R/T = 50, [dejds] < 0·024, i.e. about 1·4°.
In general we could tolerate higher-angle kinks with no further penalty in bending

stress if we could "round" the kink by a faired parabola extending a meridional distance L,
as indicated in Fig. 8. By our previous analysis this gives an attenuation effect exactly as if
the equivalent ring load F were uniformly spread as a pressure over a meridional length L.
The attenuation factor for peak M", is readily computed [7] to be

g = e- Y sin y/y

where

y = Lc/2.j(RT),

and this is plotted in Fig. 9. Using this curve we can work out the relation between Land
[de/ds] resulting in our tolerable 20 per cent bending stress and this is shown in Fig. 10.

9

o 2 3

FIG. 9. Attenuation of peak M", when a ring load is spread over a length L.
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\·5 ~ [~]
c {f ds

o 2

curvature of
arc-m/R

3
FIG. 10. Increase in slope discontinuity tolerable when a smoothing arc is inserted.

The meridional curvature of the "bridging are" is given by the construction shown, for
any point on the curve.

Another useful result is that for Lc/.J(RT) ~ 0·5, approximately, the location of the
"effective meridian" is virtually unchanged by the insertion of the smoothing section.

An isolated "bump"

Calculations of the effective meridian for a class of imperfections involving a "blip"
in the meridian are shown in Fig. 11 for three different lengths of imperfection. The im­
perfection profiles range from one corresponding to a stress-relieved "weld sinkage" to
an alignment imperfection of a strake. For corresponding curves, the horizontal scale for
all profiles is the same, as indicated. It turns out to be useful to define an effective length A.
as follows:

(37)

Thus imperfections having the same height and area included beyond the perfect meridian,
like those shown, have the same value of A.. The advantage of using A. is that for
A.c/.J(RT) ~ 1·2, approximately, the effective meridian is virtually independent of the
details of the imperfection profile, as may be verified by inspection of Fig. 11. For higher
values of A. the effective meridians differ from each other, since each approximates the
imperfection profile more closely as A. increases. The points marked on the curves for
A.c/.J(RT) = 3·69 were found by using the construction of Fig. 8 at each discontinuity
of slope.

More results are plotted in Fig. 12, which shows how the peak eccentricity at the
effective meridian varies with the length of the imperfection. The diagram illustrates the
previous remarks. The fact that the slope discontinuities may be considered separately
for the longer wavelengths justifies our earlier step of taking .J(r2 T) as a typical length of
imperfection.



692 C. R. CALLADINE

(01

------
---=.:::::=~-:::'=:::-
c;;::::~--~.-::.:;-~.--.....=--' ------------t-

(bl ----------­.---­.-'--.-,..,~-

::::::==-~ ....~ -----_.-+-

--------'---- ,
~::::'::::'----.... / --------- _...-............ ~
=--=----.:::=.:----J -+

(Cl

--+-

,'/"""""

--------
---~

.",..-""" "............ ,I'

---;:-
, .. ,.. ..

(dl
scoles for m Ie

~••• -._ ••>
<!------------+
~---------------------

meridian
effective} A(;/mT-O·41 ----

. . 1·23 ------
meridians 3.69 .--.-...-------

FIG. II. Results for various symmetrical imperfections.

The results of these calculations agree very well with those of Steel and Skogh [5J,
who studied imperfections of the types shown in Fig. 11(a) and also a range of more acute
imperfection shapes made from higher degree parabolas.

The imperfection studied by Fliigge [4, p. 364J is very similar to that of Fig. lI(c)
except that the slope discontinuities were "rounded" over a meridional length ~ 0·59
J(RT)jc. This should not have much effect on the effective meridian, as argued above.
In our notation Fliigge had Lc ~ 4·3 J(RT) and the resulting effective meridian (not shown)
is virtually identical to Fltigge's results. It should be noted that in [4J N: varies by about
13 per cent from one end of the imperfection to the other. Our method ofplotting minimizes
the consequence ofthis.

Antimetric imperfections
Figure 13 shows results for two antimetric imperfections, involving a smoothed step

in the meridian. The same scheme of plotting applies as to Fig. 11 and again we find that
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o 234

FIG. 12. Peak eccentricity of effective meridian for various symmetrical imperfections.

for the same .Ie [defined by (37) for the corresponding symmetric imperfection] the effective
meridian is insensitive to the details of the imperfection profile for .lecl.j(RT) :::; 1·2. For
higher values of.le the effective meridian follows more closely the form of the imperfection,
with slope discontinuities behaving separately, as before.

Periodic imperfections

Clark and Reissner [3] studied the behaviour of nearly-cylindrical shells with undulating
meridians under uniform axial loading.

(0) ---::/./.1----- ,,/---- /"/---- //-- //.-/----------

__--:;A
----- /....<:----- ///----- .,.,"_/-------- .-..--~--- . -------------+-

( b)

scales for
Mlc

<t••••••_.~

+-----------­------------------------
FIG. 13. Results for various antimetric imperfections.
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This kind of problem is readily analyzed by the methods of the present paper. For
example, let the meridian profile be

~ = ~o sin rr.s/L (38)

where L is the half-wave length. Then putting N: = - No we obtain

N: = NO~O(rr.2/L2) sin rr.s/L.

Substituting into (19) and solving (16) and (18) subject to distant boundary conditions, we
find

where

N e = (1-f)N: (39)

(40)

This is plotted in Fig. 14. These results indicate that the effective meridian is similar to the
actual meridian but with amplitude multiplied by (I-f). Thus for short waves the effective
meridian is nearly straight and the bending stresses may be appreciable, while for long
waves the solution approaches the membrane solution, as indeed we would expect from
the previous analysis. These results agree precisely with those of [3J for sinusoidal meridians.

f

o

FIG. 14. Effect of wavelength on behaviour for sinusoidal imperfections.

Step change ofmeridional curvature

For a final example we consider an imperfection in which there is a discontinuity in
meridional curvature, d(l/r t ), as shown in Fig. 15. The effective meridian, as computed, is
also shown and, as in Fig. 8, there is a unique natural scale to the diagram. By symmetry
the eccentricity is zero at the point of curvature change and has peak value
0·0807d(1/r t )RT/c2 at distance ±0.785.J(RT)/c from this point.

This "imperfection" corresponds, for example, to the junction between a cylindrical
shell and a matching spherical cap. In this case d(l/rd = I/R and we find that the maximum
meridional bending stress is given by

(J~T/N", = 0·484/c2
• (41)

This result is independent of R/T and agrees exactly with an example of Fliigge [4, p. 342].
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#
effective meridian~A

imperfect meridian

__--fl<r ------I
c

FIG. 15. Result for step change in meridional curvature.

CLASSICAL (EIGENVALUE) BUCKLING THEORY

We can readily use our methods to study classical (eigenvalue) buckling of shells of
revolution. Suppose an initially perfect cylindrical shell is buckling symmetrically under
N: = -No. The current deflected meridian, say w = Wo sin nslL, gives additional mem­
brane stress resultant Nt, according to (29), with ~ = w, which in turn "loads" the perfect
shell, according to (32). The N 6 response is given by (39) and the corresponding change in
radial deflection, RN61ET, is simply equal to w.

The resulting equation, from which w cancels, gives the following expression:

L 2 ET
No = (1-f) R2n2 '

No has a minimum value, No = ET21Rc2
, which is therefore the classical elastic buckling

load, when LcIJ(RT) = n1J2.
This result agrees with buckling formulas to be found in the classical texts (see, e.g.

Timoshenko and Gere [12]) for axisymmetric buckling of cylindrical shells under end
load alone or end load combined with external pressure.

The absence of Nt from the buckling formulas is due simply to the fact that
the equivalent change in pressure loading corresponding to an imperfection does not
involve Nt : see (32).

DISCUSSION

So far we have considered only shells in which r2 is constant, i.e. cylindrical and spherical
shells. It is clear, however, that our results should be applicable to other sorts of shell,
e.g. conical, for which r2 might vary by not more than a few per cent in the vicinity of an
imperfection.

This raises the question of what limits, if any, there are to the meridional form of the
"perfect" shell. The essence ofperfection, in this context, is that there should exist practically
no bending stresses. Therefore we could not, for example, consider an ASME standard
torispherical pressure vessel head as perfect. Indeed, we might be tempted to regard such
a head as the imperfect version of an unknown "perfect" closure.
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It is clear from one of our examples that a modest step change in meridional curvature,
such as from a cylindrical vessel to a hemispherical closure, can cause bending stresses of
the order of 30 per cent of the nominal meridional stress. To reduce bending stresses
appreciably we must either restrict abrupt changes in curvature to small fractions of the
circumferential curvature or avoid step changes in curvature altogether.

When we examine the normal fabrication procedures for actual shell structures, it
seems unrealistic to be sanguine about the possibility of controlling the rate of change
of curvature along the meridian. Indeed, it seems clear than an initial over-pressure test
may well afford the only practical means of making appropriate fine adjustments to the
profile, by virtue of plastic flow. The details of such adjustments could be studied by means
of relatively simple extensions of the present methods, given the appropriate material
properties.

Although we set out to study the effect of "small imperfections" in shape of meridians,
it is tempting to speculate that the same methods could be applied to gross imperfections
such as major discontinuities in pressure vessels. Unfortunately the present results cannot
be applied directly, since there are usually marked discontinuities in both N: and r2 at
such intersections. Further, the "effective meridian" concept, if applicable at all, would
have to be re-worked carefully. However, some simple techniques for dealing with major
discontinuities have already been discussed [6] and the present paper is in effect an extension
of this previous work appropriate to the special circumstances of small imperfections.

SUMMARY AND CONCLUSIONS

1. Sufficiently far from the apex of a thin elastic shell of revolution with a smooth
meridian [say r3 > 5J(r2 T)] the effect on the governing equations of introducing a small
imperfection in the meridian is merely to alter the right hand side. Consequently the
effects of such imperfections may be studied in isolation and general results obtained.

2. In general the effects of imperfections are most marked in terms of changes in N 8

and M4>' with relatively little change in N 4> and they can be discussed without specific
reference to the shape of the shell or the type of loading.

3. The most convenient way of presenting results is in terms of the effective meridian.
The membrane stress resultant NZ in a shell made in the form of the effective meridian is
the same as N 8 in the imperfect shell and M4> is given by N 4> multiplied by the separation
between the actual and effective meridians.

4. The effective meridian is smooth and its form is always a smoothed-out version of
the imperfect meridian. It follows closely smooth imperfections having characteristic
length long compared to J(r2T) but takes a fairly straight "middle" path for short imper­
fections.

5. A useful by-product of the analysis is the idea that some types of shell intersections
may be considered as simple imperfections. The analysis also throws light on some aspects
of classical buckling formulae for thin shells of revolution.
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A6cTpaKT-BbIBO):lI1TCli ypaBHeHHlI ):Iml CHMMeTpH'IeCKH HarpylKeHHol! ynpyroll, TOHKOli 060JIO'lKH, TaKHM
o6pa30M, '1To6bl MOlKHO JIeno aHaJIHpH30BaTb 3<!><!>eKTbl MaJlblX OTKJlOHeHI1l! Mepl1):1HaHa OT "H):IeaJlbHOll"
<!>OPMbi. )].alOTcli peweHHlI ):\Jlll HeKOTopblX CJly'laeB HenpaBI1JlbHOcTel!. Pe3YJlbTaTbi COCTaBJIeHbl B cnel.\­
HaJIbHO KOMnaKTHoli <!>opMe. KOHCTPYKl\110HHble 3<!><!>eKTbl, B 60JlbWOl! CTeneHH, 3aBHCliT OT Mepl1):1HO­
HaMHol! ):IJlHHbl HenpaBI1JlbHOcTeli. HeKoTopble 3a):la'll1 COe):lllHeHHblX o60JlO'leK MOlKHO paccMaTpHBaTb B
3aBHCHMOCTI1 OT HenpaBI1BOJlbHOCTI1 <!>OPMbl. MeTo):l MOlKHO o606l1.\l1Tb, C l\eJlblO onpe):leJleHHlI KJIaCCH'f­
eCKoli HarpY3KI1 Bbmy'lI1BaHHlI, JlJlll oce-CIIMMeTplI'IeCKI1X BH):IOB Bbmy'lIlBaHl1l1.


